

This question paper contains & printed pages.

Your Roll No.

Sl. No. of Ques. Paper: 5711

H

Unique Paper Code

: 235304

Name of Paper

: Algebra - II (MAHT-303)

Name of Course

: B.Sc. (Hons.) Mathematics

Semester

: III

Duration

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immedion receipt of this question paper.)

Do any two parts from each questions.

Questions

- 1. (a) Let $G = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : \hat{a} \in \mathbb{R}, a \neq 0 \right\}$. Show that G is a group under matrix multiplication. (6)
 - (b) (i) Prove that if G is a group with the property that square of every element is identity then G is abelian.
 - (ii) Define center of a group G. Show that center of a group G is an abelian subgroup of G. (2+4)
 - (c) Define order of an element. Consider the element $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. What is the order of

A in

- (i) SL(2, ℝ)
- (ii) SL (2, Z p), p is a prime.
- (6)
- 2. (a) Let $G = \langle a \rangle$ be a cyclic group of order n. Prove that $G = \langle a^k \rangle$ if and only if gcd(n, k) = 1. Find all the generators of Z_{20} . (6.5)
 - (b) Suppose that a and b are group elements that commute have orders m and n respectively. If <a> ∩ = {e}. Prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.
 (6.5)

- (c) Let 'o' be a fixed element of a group G. Define centralizer of the element a. Show that $Z(G) = \bigcap_{a \in G} C_1(a)$. (6.5)
- 3. (a) (i) Prove that product of two odd permutation is an even permutation.
 - (ii) Show that $Z(S_n) = \{ \epsilon \}$ for $n \ge 3$. (2+4)
 - (b) Show that if H is a subgroup of S_n then every member of H is an even permutation or exactly half of them are even.
 (6)
 - (c) (i) Let H and K be subgroups of a group G. If |H| = 12 and |K| = 35, find $|H \cap K|$.
 - (ii) Find all left cosets of {1, 11} in U(30). (2+4)
- 4. (a) State and prove Lagrange's theorem for finite groups. (6.5)
 - (b) (i) Prove that every subgroup of D_n of odd order is cyclic.
 - (ii) Prove or disprove Z x Z is a cyclic group. (3.5 + 3)
 - (c) Define index of a subgroup in a group. Show that Q, the group of rational numbers under addition has no proper subgroup of finite index. (6.5)
- (a) Let G be a group and H a normal subgroup of G. The set G/H = (aH) a ∈ G) is a group under the operation (aH) (bH) = abH.
 - (b) Let N be a normal subgroup of a finite group G. If N is cyclic, prove that every subgroup of N is normal in G.
 (6)
 - (c) Determine all the homomorphisms from Z₁₂ to Z₃₀. (6)
- (a) Suppose that φ is an isomorphism from a group G onto a group G. Prove that G is cyclic if and only if G* is cyclic. Hence show that Z, the group of integers under addition is not isomorphic to Q, the group of rationals under addition. (6.5)
 - (b) State and prove Cayley's theorem. (6.5)
 - (c) Let M and N be normal subgroups of a group G and N \subseteq M. Prove that $(G/N)/(M/N) \cong G/M$. (6.5)

Join Us For University Updates

learndu.in

learndu.in

Learn_DU

Learn DU

